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Abstract 
This paper illustrates the first results of an ongoing research for developing novel methods to analyse and simulate the relationship 
between trasport-related air pollutant concentrations and easily accessible explanatory variables. The final scope of the analysis is to 
integrate the new models in traditional traffic management decision-support systems for a sustainable mobility of road vehicles in 

urban areas. 
This first stage concerns the relationship between the mean hourly concentration of nitrogen dioxide and explanatory factors like 
traffic and weather conditions, with particular reference to the prediction of pollution peaks, defined as exceedances of normative 
concentration limits. Two modelling frameworks are explored: the Artificial Neural Network approach and the ARIMAX model. 
Furthermore, the benefit of a synergic use of both models for air quality forecasting is investigated. 
The analysis of findings points out that the prediction of extreme pollutant concentrations is best performed by the integration of the 
two models into an ensemble. The neural network is outperformed by the ARIMAX model in foreseeing peaks, but gives a more 
realistic representation of the relationships between concentration and wind characteristics. So, it can be exploited to direct the 
ARIMAX model specification. At last, the study shows that the ability at forecasting exceedances of pollution regulative limits can 

be enhanced by requiring traffic management actions when the predicted concentration exceeds a threshold that is pretty high but 
lower than the normative one. 
 
Keywords: air quality forecasting, exceedances of pollutant concentration limits, nitrogen dioxide, artificial neural network, 
ARIMAX model, ensemble techniques. 

 

 
 
 

1 Research question and review of literature 

It is broadly demonstrated that air pollution in urban areas is mainly due to the intense use of motorized 
transport for travelling, with particular regard to private cars and heavy goods vehicles. This is a top priority 

issue for transportation planners and public authorities, given the harmful effects of pollution to human 

health and the environment. 
Numerous studies (Heinrich et al., 2005; Zhang et al., 2012) argue that acute exposure to air pollutants may 

cause serious temporary health concerns such as eye irritation, breathing difficulty, cardio-vascular 

problems, while chronic exposure may lead to damages to the body’s immune, neurological, reproductive 

and respiratory systems, cancer and even premature death. In November 2014 the British Committee on the 
Medical Effects of Air Pollutants reported that air pollution may be responsible for as many as 60,000 early 

deaths in Britain each year. Also the environment is affected in terms of global climate change and adverse 

effects for plants and eco-systems (Seinfeld and Pandis, 2006; Zhang et al., 2012). 
To protect human health and the environment, various national contexts throughout the world have issued 

guidelines and regulations. The United States Environmental Protection Agency (EPA) has set national 

ambient air quality standards for six pollutants: sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon 
monoxide (CO), ozone (O3), lead (Pb) and particulate matter (Seinfeld and Pandis, 2006). 

                                                             
 The contribution of Mario Catalano was carried out during his visiting in 2014 and 2015 at the Transport Operations Research 

Group of the University of Newcastle, School of Civil Engineering and Geosciences. 
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In Europe, over the last decades, the European Union has adopted an ample range of environmental measures 

to improve the quality of life for the Community's citizens. The final step of this legislative process is the 

Directive 2008/50/EC (EU, 2008), which has integrated an extensive body of laws establishing health-based 
concentration standards for a number of pollutants in outdoor ambient air. The European Commission has 

the task of ensuring that environmental law is applied by the Member States through infringement 

procedures. 
Long term measures like mode switch policies in favour of mass transit and public regulation on road use are 

pretty effective in abating atmospheric pollution in cities, but pollution peaks and the consequent exceedance 

of regulative concentration thresholds are often caused by substantial fluctuations of mobility patterns and 

weather conditions around their expected behaviours. Hence, air quality protection needs to be fine-tuned 
through the introduction in the local policy portfolio of further tools and actions to forecast extreme pollution 

events and manage traffic over short-term periods in order to prevent the predicted concentration peaks. 

Given the above, this research has been started to investigate traffic-related air pollution modelling with the 
final aim of developing a real-time decision-support system for a more sustainable mobility of road vehicles 

in urban areas. In more detail, four main challenges will be addressed: 

1. to develop a model to predict accurately the density of those airborne pollutants subject to normative 
standards for hourly or daily state of concentration, so as to permit local authorities to prevent their 

occurrence by real-time traffic management; 

2. to explore the benefits in terms of accuracy and geographical transferability of models based on panel 

data, which are novel in the air quality modelling literature; 
3. to build a method for predicting well in advance the yearly average of hourly mean concentrations, thus 

providing Local Authorities with a powerful tool to determine if and when to act in order to respect the 

environmental law, when this limits the behaviour of pollution over an annual period; 
4. to experiment the synergic interplay between pollutant concentration forecasting and vehicular mobility 

microsimulation for an enhanced traffic management system based also on air quality targets. 

By addressing the identified challenges, this research might be of strategic importance for many national 

contexts. To have an idea of the worldwide scale of atmospheric pollution problems, one could examine the 
2014 version of the WHO (World Health Organization) Ambient Air Pollution database consisting mainly of 

urban air quality data, notably annual means of PM10 and PM2.5
6
 concentration for about 1,600 cities of 91 

countries in the 2008‐2013 period (WHO, 2014). As can be seen in Fig. 1, the world's annual mean levels of 
PM10 by region range from 26 to 208 µg/m

3
; the world's average is 71 µg/m

3
 against the value of 20 µg/m

3
 

recommended by the WHO air quality guidelines (WHO, 2014). Particular concern is associated to the East 

side of the planet, where countires like China, India, Nepal, Bangadlesh, Mongolia and, in the Mediterranean 
Area, Egypt, Iran, Jordan, Afghanistan, Pakistan far exceed the world's yearly mean density of PM10. 

 

 

                                                             
6 Particles with diameter smaller than 10 and 2.5 microns, respectively. 
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Fig. 1. PM10 levels by region, for the last available year in the period 2008‐2012. Amr: America, Afr: Africa; Emr: 

Eastern Mediterranean, Sear: South-East Asia, Wpr: Western Pacific; LMI: Low- and middle-income; HI: high-

income. 

 

 
The 2014 Air Quality in Europe Report (European Environment Agency, 2014) states that, in EU cities, 

exposure to atmospheric pollution levels exceeding the WHO air quality limits (in general stricter than the 

EU standards) is significantly high for various chemical agents. This over limit exposure regards 64% and 
92% of the total EU-28 urban population in 2012 for PM10 and PM2.5, respectively. Moreover, in the case 

of ozone, in the same year, the exposure incidence rises to even 98% of people living in towns. There has 

been a clear decreasing trend, instead, for NO2 concentration in many European countries over the last 

decade
7
, but, in the United Kingdom, the NO2 levels have exceeded the relative WHO and EU target values 

persistently. This is confirmed by the fact that, in the early part of 2014, the European Commission launched 

legal proceedings against the UK for its failure to cut excessive levels of nitrogen dioxide (EU Press Release 

Database, 2014). Lastly, while exposure of the Europeans to CO concentrations above the EU and WHO 
thresholds is negligible, in the case of benzene (C6 H6), around 10% of the EU-28 urban population is subject 

to pollution beyond the WHO levels and the percentage takes on the value of 37% in the case of SO2. 

This paper presents the early stage of our ongoing research, which refer to nitrogen dioxide, a toxic gas 
emitted by road vehicles, shipping, power generation, industry and households, which, even in the case of 

short term exposures (from 30 minutes to 24 hours), may cause adverse respiratory effects in healthy 

individuals. Furthermore, it is the main precursor for ground-level ozone, that is very harmful to human 

health. For NO2, the EU environmental legislation sets two types of standard: the hourly mean concentration 
cannot go beyond the level of 200 µg/m

3
 more than 18 times each calendar year; the annual average of 

hourly concentrations is not allowed to exceed 40 µg/m
3
. 

In particular, we have modelled the relationship between NO2 hourly concentration and potential explanatory 
variables such as transport-related attributes, that influence emissions, and weather conditions, that are 

responsible for dispersion and transformation of pollutants. 

As regards the scientific background of the research, few studies have appeared in the scientific literature on 
real time air quality forecasting near urban arteries, amongst which some are particularly interesting for this 

work, since they investigate the relationship between nitrogen oxides levels and meteorological and 

transport-related variables (Kukkon et al., 2003; Ming et al., 2009; Nagendra and Khare, 2006; Perez and 

Trier, 2001; Viotti et al., 2002). The leitmotiv of these studies is to consider the Neural Network, from the 
domain of Artificial Intelligence science, the most effective tool to predict air quality in urban areas. In some 

cases, this methodology is compared with other approaches, but they are usually linear regression models or 

deterministic models simulating the relevant physical processes. If also other pollutants are considered, it is 
possible to find air quality modelling works applying further statistical methods. For example, Arwa et al. 

(2014) tackle the issue of predicting particular matter concentration evaluating different models: multiple 

linear regression, quantile regression, generalised additive models and regression trees. Baur et al. (2004) 

compare the performance of quantile regression with multiple linear regression for predicting ozone 
concentrations. Kaushik and Melwani (2007) adopt the Seasonal Autoregressive Integrated Moving Average 

(ARIMA) model to forecast the daily levels of sulphur dioxide, nitrogen dioxide and suspended particulate 

matters. 
Generally speaking, parametric and non-parametric statistical methods are more suitable for the description 

of complex relations between concentrations and potential predictors, and often present a higher accuracy, as 

compared to deterministic (physically-based) models, which are, furthermore, computationally expensive. 
However, statistical techniques are usually confined to the conditions occurring during the measurements 

and cannot be generalized to other areas with different chemical and meteorological characteristics. In 

addition, they fail to forecast concentrations during periods of unusual emissions and/or weather conditions 

that deviate significantly from the historical record (Zhang et al., 2012). 
Given the above, in an attempt to develop an effective tool for predicting exceedances of NO2 hourly 

concentration thresholds set by the EU, this research explores the statistical approach. For the particular case 

of nitrogen dioxide, a gap in the scientific literature has been identified in relation to the comparison between 
non-parametric statistical techniques, like the popular neural network, and sophisticated parametric methods 

as the Auto-Regressive Integrated Moving Averages with eXogenous inputs (ARIMAX) model (Hamilton, 

                                                             
7 Between 2003 and 2012, in EU-28, the ambient air NO2 annual mean concentration dropped by 18% on the average. Only 8% of 

the EU-28 citizens live in areas where the annual WHO and EU thresholds for NO2 were exceeded in 2012. 
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1994). Hence, the neural network and the ARIMAX framework have been compared with respect to NO2 

concentration forecasting through a set of indicators for missed exceedances and false alarms. In addition, 

based on successful experience in other fields
8
 (Bishop, 1995; Re and Valentini, 2012; VV. AA., 2008), the 

effectiveness of multimodel approaches have been evaluated. So, the forecasts from different models have 

been combined and the resulting impact on prediction accuracy has been quantified. 

The remainder of the paper is structured as follows: section 2 describes the site where the data used in this 
work have been collected along with the dataset itself in terms of descriptive statistics and statistical 

properties of the involved time series; section 3 illustrates the theoretical foundations, specification and 

estimation of the models employed to forecast air quality; section 4 performs a comparative analysis of the 

predicition models based on statistical and catagorical metrics; in the end, section 5 draws conclusions and 
points out new topics for future research. 

 

 

2 Case study 
This section gives details about the study area with respect to its geometric characteristics and the 

technologies used to collect air quality and traffic data. In addition, the dataset employed to derive insights 
into the research problem has been analysed with descriptive statistics and time series analysis techniques. 

 

 

2.1 Air quality monitoring site 
The study area chosen to perform the analysis is Marylebone Road in the City of London (see Fig. 2)

9
. 

Marylebone Road has three lanes each way, with the nearside lanes in both directions reserved for buses and 

taxis. The traffic along the corridor is controlled by a demand responsive signal control system termed 
SCOOT, Split Cycle Offset Optimization Technique (Hunt et al, 1981). The cabin for air quality 

measurement is located on the southern side of the road, on a spot where the road is characterised by a 

canyon H/W ratio of 0.86
10

 (see inset in Fig. 2). For Marylebone road, a reach dataset over a ten year period 

(1998-2007) is available, which contains traffic (flow and speed for each lane), weather and air quality data 
at an hourly resolution. 

 

 

Fig. 2. The study area, Marylebone road in London, and the air quality monitoring site. 

 
 

                                                             
8 Such as machine learning science, astronomy, astrophysics, computer network intrusion detection, early diagnosis of diseases, face 
recognition. 
9 For a preliminary analysis see: Bell et al. 2015. 
10 The ratio of average buildings' height to road width (Tartaglia, 1999). 



Working papers SIET 2015 – ISSN 1973-3208 

 

2.2 Descriptive analysis of the dataset 

The analysis has concerned the relationship between the mean hourly concentration of NO2 and explanatory 

factors like traffic and weather in a central spot of London, Marylebone Road, throughout the year 2007. 
Table 1 shows the main statistics describing the set of data collected in 2007 within the study-area. As can be 

seen in the table, the average of all hourly NO2 concentrations is quite high (102.5); furthermore, it has been 

calculated that the 200 µg/m
3
 EU threshold was exceeded 457 times during 2007, against a maximum 

regulative limit of 18 times in a year. This makes the considered study-area a source of severe nitrogen 

dioxide air pollution, that needs long term policy-actions for sustainable transport, but also effective 

prediction models to support real-time traffic management. Such a problematic atmospheric condition may 

be probably ascribed to two main reasons: the high traffic volume which, from 7:00 to 21:00 o'clock, is 
greater than 4000 passenger car units/hour for 72% of time; the quasi-canyon layout of the monitored street, 

since the ratio of average buildings' height to road width is around 0.9 (Tartaglia, 1999). 
Table 1. Descriptive statistics for the set of air quality, transport and weather data collected in 2007 within the study-

area. 

Variables Observations Average Min Max 
Standard 

Deviation 

Hourly mean concentration of NO2 (µg/m3) 8584 102.5 4 329 53.1 

Total traffic volume* (passenger car units/hour) 8734 3505.7 303.7 5161.5 1173.2 

Hourly mean speed of wind (km/h) 7993 2.8 0.1 15.1 2.1 

Hourly mean direction of wind (North degrees) 7993 203.9 2.9 358.1 82.4 

Hourly mean temperature (centigrade degrees) 7993 13.5 -0.8 29.7 5.2 

* The orginal data on traffic were disaggregated by six vehicle classes: Motorcycle, Car or Light Van (length < 5.2m), Car and 
trailer, Rigid Lorry, Heavy Van (length ≥ 5.2m) or mini-bus, Articulated Lorry, Bus or Coach. The measured flows for each 
category have been turned into passenger car equivalents through the following multiplicative parameters (Lavecchia et al., 

2007): 1 for motorcycles and cars, 1.5 for light vehicles (5m<length<7.5m), 2 for heavy vehicles (7.5m<length<12.5m), 3 for vey 
heavy vehicles (length > 12.5m). 

 
 

Fig. 3 shows through scatter graphs the relationships between the hour-based mean density (µg/m
3
) of NO2 at 

Marylebone road in 2007 and the explanatory variables taken into account, which are the hourly averages of 

traffic volume (passenger car units/hour), wind speed (km/h), wind direction (North degrees) and 
temperature (centigrade degrees). As can be observed, traffic flow has a positive impact on concentration, 

while wind speed is inversely related to pollutant density; moreover, the relationship between pollution and 

wind direction looks quite complex and needs further investigation, whereas temperature seems negligible. 
Especially in the case of weather variables, the influence on concentration follows a non-linear behaviour. 
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Fig. 3. Scatter plots depicting the relationships between NO2 mean concentration and its explanatory variables for the 

set of hourly observations recorded in 2007 at Marylebone road. 

 

2.3 Time series analysis 

The time series of the considered variables has been analysed to check their stationarity, a statistical property 
of the series-generating stochastic process which requires its mean and autocovariance to be date-

independent. It is also a regularity condition which enables the development a model to explain a certain 

variable with its past values and a set of exogenous predictors (Hamilton, 1994). We have checked whether 
this property holds in our case-study through graphical inspections and formal tests. 

As Fig. 4 displays, the time mean and variance of the variables of interest look quite stable through the year, 

except for the hourly averages of vehicle speed and temperature. In the first case, there is a turning point in 
the time series behaviour in the early part of the year. Temperature, as expected, shows an increasing trend in 

the first half of the year and a decreasing one in the second half. 
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Fig. 4. Line plots depicting the hourly averages of NO2 density (µg/m3), traffic volume (passenger car units/hour), wind 

speed (km/h), wind direction (North degrees), vehicle average speed (km/h) and temperature (centigrade 

degrees), in 2007 at Marylebone road. 

 

Speed and temperature as non-stationary inputs cannot be employed to explain NO2 hourly density, which is 
instead stationary. The stationary nature of NO2 concentration, traffic volume, wind speed and direction, 

which is pretty clear in the respective line plots, is confirmed by the Augmented Dickey-Fuller (ADF) unit 

root test (Hamilton, 1994). On one hand, under the most general null hypothesis, this test assumes that the 

model representing the true behaviour of a given time series 𝑦𝑡 can be formulated as a random walk with 

drift: 

 

𝑦𝑡 = 𝛼 + 𝜌(= 1) ∙ 𝑦𝑡−1 + 𝜀𝑡           (1) 
 

where, 

 

𝑦𝑡: dependent variable (in our case, the hourly mean concentration of NO2), assumed to depend upon its first 

order lagged value 𝑦𝑡−1 by coefficient 𝜌 equal to one (unit root), which implies non stationarity in variance; 

𝛼: drift term which makes 𝑦𝑡 expressable as the sum of a linear time trend and a series of random impulses 

(𝑦𝑡 = 𝛼 ∙ 𝑡 + ∑ 𝜖𝑖
𝑡
𝑖=0 ); 

𝜖𝑡: independently and identically distributed error terms with zero mean (white noise); 

 
On the other hand, the most general alternative hypothesis of the test is the stationary behaviour of the series 

around a deterministic linear time trend: 

 

𝑦𝑡 = 𝜇 + 𝛿 ∙ 𝑡 + 𝜌(< 1) ∙ 𝑦𝑡−1 + 𝜀𝑡         (2) 

 

where 

 

(𝜇 + 𝛿 ∙ 𝑡) is the trend; 

𝜌 is smaller than one, thus making the fluctuations of the series around its trend be the manifestation of a 

first-order autoregressive model; 
 

Since model (2) might not capture fully the underlying serial correlation (the autocorrelation could go far 

beyond the first order level), the ADF test fits through the Ordinary Least Square technique a transformation 

of model (2): 
 

∆𝑦𝑡 = 𝜇 + 𝛿 ∙ 𝑡 + 𝛽 ∙ 𝑦𝑡−1 + 𝛾1 ∙ ∆𝑦𝑡−1 + ⋯ + 𝛾𝑘 ∙ ∆𝑦𝑡−𝑘 + 𝜖𝑡      (3) 

 
where, 

 

∆𝑦𝑡 =  𝑦𝑡 − 𝑦𝑡−1: first difference of variable 𝑦𝑡; 

𝛾𝑗 ∙ ∆𝑦𝑡−𝑗 = 𝛾𝑗 ∙ (𝑦𝑡−𝑗 − 𝑦𝑡−𝑗−1) : additional elements to capture the likely presence of furhter serial 

correlation in 𝑦𝑡; 
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Testing 𝛽 = 0  amounts to testing 𝜌 = 1  (Hamilton, 1994) or, equivalently, that 𝑦𝑡  follows a unit root 

process, which means that it is not stationary and, hence, to become stationary, it has to be differenced 
subtracting from each element of the series its first-order lagged value. The test has been performed for the 

hourly averages of NO2 density, traffic volume, wind speed, wind direction. Several values of lag k have 

been experimented and in each case the null hypothesis (𝛽 = 0) has been rejected, thus confirming the 
output of the preliminary graphical inspection of the above variables. Table 2 presents the test results for lag 

k = 24, which can take account of possible forms of autocorrelation till a day before the hour of interest. 

Since the series under consideration do not show a trend, but have a nonzero mean, under the null 

hypothesis, the value of the drift (𝛼) has been set at zero, while, under the alternative hypothesis, only the 𝛿𝑡 
term of regression (3) has been dropped. Table 2 shows that, in each instance, the test statistic is far smaller 

than the critical values at 1%, 5% and 10% significance levels, which makes the assumption of stationarity 

highly plausible. 
 

 

Table 2. Augmented Dickey-Fuller unit root test results if lag k = 24. 

H0: β = 0 and α = 0; 

H1: δ = 0 

Variables Test Statistic 
Critical Value 

1% 

Critical Value 

5% 

Critical Value 

10% 

Hourly mean concentration of NO2 (µg/m3) -9.090 -3.430 -2.860 -2.570 

Total traffic volume (passenger car units/hour) -8.905 -3.430 -2.860 -2.570 

Hourly mean speed of wind (km/h) -9.143 -3.430 -2.860 -2.570 

Hourly mean direction of wind (North degrees) -9.075 -3.430 -2.860 -2.570 

 

 

To specificate a model for the time series of NO2 hourly concentration, it is useful to study also its 
autocorrelation. This has been done through the visual analysis of the total and partial

11
 autocorrelation 

functions. In Fig. 5, the behaviour of total autocorrelation reveals a weak seasonal effect: in fact, as the lag 

extends, the positive value of autocorrelation declines, but with a reversal occuring whenever the time 
interval gets to a multiple of twentyfour hours. In addition, the partial autocorrelation highlights a strong 

dependence of concentration upon its value one hour back, whereas the other direct relationships with past 

concentrations are negligible. The seasonal effect can be interpreted considering that road mobility follows a 
cyclical pattern that stems from people's routine and, hence, is incorporated into the behaviour over time of 

all the pollutants strictly related to transport such as NO2. The positive correlation with the mean density of 

the previous hour, instead, could be reasoned out considering that the amount of pollutant emitted during an 

hour requires a certain time to be dissipated, so a fraction of it represents the background for the next hour. 
Moreover, the background pollution in an hour contains not only what has been emitted and not dispersed 

during the preceding hours, but also what is emitted in the hour of interest by sources different from 

transport, mainly residences in our study-area. The impact of changes in this part of the background on 
concentration is likewise taken into account by the average density of the previous hour. In fact, variations in 

the emission pattern of residential activities with respect to its mean behaviour can be considered persistent 

at least within the same day. 

 
 

                                                             
11 The partial autocorrelation at lag k measures the correlation between xt and xt+k after the effects of xt+1, ..., xt+k-1 have been 

removed. 
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Fig. 5. Graphes of the total and partial autocorrelations for hourly average of NO2 density (µg/m3) in 2007 at 

Marylebone road. 

 

 

3 Modelling approaches explored 
As stated previously, this work compares the performance in forecasting NO2 concentration of two families 
of models: the Artificial Neural Networks (ANN) and the Auto-Regressive Integrated Moving Averages 

models with eXogenous variables (ARIMAX). Both belong to the statistics domain, which uses 

mathematical functions built on empirical data to predict concentration. Unlike the ARIMAX methodology, 
the ANN approach does not require specific assumptions on the mathematical relationships between the 

pollutant density and its explanatory factors. There is very little literature on this type of comparative 

analysis, especially with reference to the prediction of extreme levels of pollution. 
The comparison is based on the dataset of NO2 hourly mean concentrations (µg/m

3
) measured throughout the 

year 2006 at Marylebone road in London. The variables to explain the state of concentration are 

representative of weather and traffic conditions during the hour of interest: traffic volume (passenger car 

units/hour), hourly mean speed of wind (km/h), hourly mean direction of wind (North degrees). Besides, 
Either models embody the double form of autocorrelation emerging from the analysis of correlograms (Fig. 

4), that is the dependency of concentration upon its past values one hour and one day back. 

So, to use these models for one step ahead concentration forecasting, traffic flow and wind characteristics 
have to be foreseen on an hourly basis. For the former, assignment of historical hourly O/D matrices 

improved with real-time traffic counts to the future state of road network can be performed. For 

meteorological factors, very precise short-term predictions can be obtained by the providers of weather 

forecats that regularly process the meteorological data collected throughout the country. 
The following subsections illustrate the concepts underpinning the two approaches in comparison and the 

frameworks of the specific models derived from the data. 

 
 

3.1 Neural network 

The neural network is an artificial intelligence-based technique that mimics the human brain behaviour in a 
learning process. The important feature of an ANN is its adaptive nature: "learning by examples" is the 

approach used by this method to accomplish classification and regression tasks. This makes neural networks 

virtually applicable in every situation in which some of the relationships between a response variable and its 

predictors are very complex and cannot be easily outlined based on a priori knowledge and theoretical 
considerations. 

The Multilayer Perceptron (MLP) architecture has proved to be the most suitable class of neural networks for 

air quality forecasting in previous studies (Nagendra and Khare, 2002). It consists of a system of layered and 
interconnected nodes or neurons. They form an input layer, one or more hidden layers and an output layer 

with nodes in each layer connected to all nodes in neighbouring layers (Bishop, 1995). The input layer 

neurons provide input signals to the hidden layer, where each node sums the inputs, processes the result with 
a nonlinear transfer or activation function (logistic or hyperbolic tangent) and then distributes it to the output 

layer. The output layer computes the dependent variable value in a similar manner. Each neuron-to-neuron 

connection is associated to a specific weight. MLP has the ability to learn through training, which requires a 
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series of input vectors and associated outputs. During training, the output from the MLP is compared with 

the desired value, an error signal is propagated back through the network and the magnitude of this error is 

used to adjust the weights iteratively till a stopping criterion is met. Besides a set of observations for training 
(training set), a further set of new data (validation or selection set) is used to limit the effective network 

complexity in favour of its generalization performance, which is the prediction or classification accuracy 

with respect to unknown cases. In fact, during a typical network learning session, the traning set error 
generally decreases as a function of the number of iterations. On the contrary, the error measured with 

respect to independent data (validation set) often shows a decrease at first, followed by an increase as the 

network starts to over-fit. So, halting training at the point of smallest error with reference to new data should 

result in achieving the best network generalization performance. 
It is common practice in the application of neural networks to train many different candidate networks and 

then to select the best on the basis of validation set performance. However, a selection based only on the 

validation set could be misleading, because the network performance has a random component due to data 
noise. Hence, the choice of a specific network structure should be confirmed by its performance in relation to 

a third independent set of data (test set). 

Fig. 6 depicts the neural architecture that has been selected to simulate the hourly average of NO2 density 
(µg/m

3
) in 2007 at Marylebone road. The independent variables are the mean concentrations one hour and 

one day back along with the non-lagged hourly averages of traffic volume (passenger car units/hour), wind 

speed (km/hour) and wind direction (North degrees). The neural network design has been performed through 

a number of experiments with different architectures (three and four layer MLP networks) and the network 
with the best selection set performance has been chosen. At each learning round, to make the candidate 

networks as diverse as possibile, resampling has been used to form the training, selection and test subsets 

from the whole sample of data. In more detail, the Monte Carlo technique has been adopted drawing at 
random the training and selection subsets, while fixing the test subset once and for all. To decide the number 

of hidden units, weight regularization (Bishop, 1995) has been performed adding an extra term to the error 

function for penalizing and reducing weights giving a small contribution to the network performance. This 

procedure prunes entire hidden units when their fanning-out weights are below a fixed threshold, thus 
limiting the curvature of sigmoid activation functions and improving the network generalization skill. 

 

 

 

Fig. 6. Neural Architecture selected to forecast the hourly average of NO2 density (µg/m3) in 2007 at Marylebone road. 

 

 
Table 3 reports the Pearson-R correlation coefficient between the model's predictions and the observed 

values and the performance of the best network for each subset of data. The high correlation reveals the 

ability of the neural model at reproducing the historical behaviour of concentration accurately. Every 

performance indicator is computed as the ratio of the prediction error standard deviation to the standard 
deviation of the specific subsample of data. A ratio remarkably below 1 indicates that the network has 

performed far better than a simple mean estimator and its use in forecasting is then justified. As Table 3 

exhibits, for the chosen network the above ratio is quite low in relation to each part of the databank, which 
signals a good level of performance. In addition, the selection performance is better than that for the training 

set, which means that the network has not overlearned. 
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Table 3. Perfomance of the best MLP neural network. 

Observations 
Train 

Performance 

Selection 

Performance 

Test 

Performance 

Obs.-Pred. 

Correlation 

7563 0.403 0.365 0.400 0.920 

 
 

Fig. 7 displays the response surfaces plotted in relation to two couples of input variables. To construct every 

response surface, the two chosen inputs vary from their observed minima to their observed maxima, while all 

other inputs are held at a fixed value (their averages). In one case, the picture visualizes the dependency of 
the NO2 hourly density upon its lagged values showing a strong positive impact of the mean concentration in 

the preceding hour and a slight effect of the corresponding hourly concentration of the previous day. 

In the other case, it is shown that the relationship between concentration and wind characteristics is clearly 
non-linear: as the wind speed rises, concentration reduces at a decreasing marginal rate, whereas the 

dependency upon the wind direction is represented by a U-shaped curve. 

The second relation, in particular, can be ascribed to the canyon layout of Marylebone road. The part of this 
artery just off the monitoring device presents a H/W ratio

12
 close to 1, which indicates the possibility of a 

canyon-street behaviour of transport-related pollution (Tartaglia, 1999). This means that, when the wind 

speed is at least 1 m/sec and its direction forms with the road normal axis an angle in the −45°-45° range, a 

vortex is generated inside the canyon-road and the pollutant concentration on the windward side is far higher 
than that on the leeward side. Marylebone road has a Southwest-Northeast allignment and the pollution 

receptors are located on its southern boundary (see Fig. 2). It follows that, when the wind comes from South, 

the set of sensors is on the windward side, so one should observe an increasing pollution concentration as the 
wind direction gets closer to 360 (or zero) North degrees. On the contrary, if the wind comes from South, the 

sensors are on the leeward side, hence concentration should be decreasing as the wind gets closer to 180 

North degrees. The trained neural network is able to simulate this complex behaviour of pollution, which 
demonstrates its good level of realism. 

 

 

 

Fig. 7. Response surfaces describing how the trained MLP neural network simulates the dependency of the NO2 hourly 

density (µg/m3) upon, in one case, its lagged values (one hour and one day back) and, in the other case, the wind 

characteristics (speed in km/hour and direction in North degrees). 

 

 
In the end, Fig. 8 points out that the traffic volume, as expected, has a positive impact on concentration 

according to a mathematical relationship that sligthly deviates from the linear function. 

 

                                                             
12 The ratio of average buildings' height to road width (Tartaglia, 1999). 
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Fig. 8. Response line describing how the trained MLP neural network simulates the dependency of the NO2 hourly 

density (µg/m3) upon the traffic volume (passenger car units/hour). 

 

3.2 Statistical model 

For the prediction of NO2 hourly concentration at Marylebone road, also an ARIMAX model has been 

developed. This represents the underlying data-generating stochastic process as the integration of two main 
components: one captures the relationship between the dependent variable and its past manifestations 

(autoregressive part), the other incorporates the effect on the dependent variable of a finite series of random 

impulses (moving average part). Formally, an ARIMAX model, with p autoregressive (AR) elements and q 
moving average (MA) terms, can be written as follows: 

 

(1 − 𝜌1𝐿1 − 𝜌2𝐿2 − ⋯ − 𝜌𝑝𝐿𝑝) ∙ (𝑦𝑡 − 𝒙′𝒕 ∙ 𝜷) = (1 + 𝜃1𝐿1 + 𝜃2𝐿2 + ⋯ + 𝜃𝑞𝐿𝑞) ∙ 𝜖𝑡   (4) 

 

or, more succinctly: 
 

𝜌(𝐿𝑝)(𝑦𝑡 − 𝒙′𝒕 ∙ 𝜷) = 𝜃(𝐿𝑞)𝜖𝑡           (5) 

 
where 

 

𝜌𝑗: coefficient of the j
th

-order AR element; 

𝜃𝑗: coefficient of the j
th

-order MA element; 

𝐿𝑗 : lag operator transforming a variable at time t into its j
th
-order lagged manifestation (𝐿𝑗𝑧𝑡 = 𝑧𝑡−𝑗); 

𝑦𝑡: dependent variable at time t; 

𝒙′𝒕: vector of exogenous covariates at time t; 

𝜷: vector of coefficients; 

𝜖𝑡~𝑁(0, 𝜎2), meaning that it is a white noise distrurbance; 

𝜌(𝐿𝑝) = (1 − 𝜌1𝐿1 − 𝜌2𝐿2 − ⋯ − 𝜌𝑝𝐿𝑝); 

𝜃(𝐿𝑞) = (1 + 𝜃1𝐿1 + 𝜃2𝐿2 + ⋯ + 𝜃𝑞𝐿𝑞). 

 

If the considered series shows a cyclical behaviour, model (5) can be turned into a seasonal ARIMAX or 

SARIMAX model by the introduction of multiplicative terms both for the AR part and for the MA 
component: 

𝜌(𝐿𝑝)𝜌𝑠(𝐿𝑝)(𝑦𝑡 − 𝒙′𝒕 ∙ 𝜷) = 𝜃(𝐿𝑞)𝜃𝑠(𝐿𝑞)𝜖𝑡         (6) 

 

where the seasonal symbols (those with subscript s) have the same meaning as their non-seasonal 
counterparts, but apply to the series every s periods. 
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The SARIMAX model for the 2007 time series of NO2 concentrations at Marylebone road has one AR term 

and one MA element both for the non-seasonal part and for the seasonal one, the latter being based on a 

periodicity of 24 hours (recall subsection 2.3). The exogenous regressors are again the traffic volume 
(autos/hour), the wind speed (km/hour) and the wind direction (North degrees). Given the above, formula (6) 

can be particularized as follows: 

 

𝜌(𝐿1)𝜌24(𝐿1)(𝑦𝑡 − 𝒙′𝒕 ∙ 𝜷) = 𝜃(𝐿1)𝜃24(𝐿1)𝜖𝑡         (7) 

 

Table 4 exhibits the results of the SARIMAX model estimation, conducted by the maximum likelihood 
technique and using the Kalman filter via the prediction error decomposition (Hamilton, 1994). This 

approach handles missing data (for the dependent variable and/or its covariates) by continuing the state-

updating recursions of the Kalman filter even if the contribution to estimation from the sample is partial or 

even null. All the estimated parameters have correct signs and high statistical significance except the 
constant. 

The main limitation of the SARIMAX model is its inability to reproduce the non-linear relationship between 

concentration and the wind characteristics, in particular with regard to direction. In this case, in fact, a linear 
positive impact on pollution is very far from the more plausible parabolic behaviour found out with the 

neural network and explained as a canyon street effect. 

In line with the Box and Jenkins' guidelines (Box et al., 2008), the SARIMAX residuals have been analysed 

to check whether they can be reasonably considered gaussian and independently distributed as required by 
the theory. Fig. 9 depicts the frequency distribution of residuals along with their autocorrelation function for 

the first 24 lags. As can be observed, the assumption of a white noise behaviour of residuals is supported by 

the empirical evidence, which validates the SARIMAX model. 
 

 
Table 4. The SARIMAX model for the 2007 series of NO2 hourly concentrations at Marylebone road. 

Hourly Averages of regressors Coefficient 
Standard 

Error 
z P>|z| [Conf. Int. 95%] 

Traffic Volume (passenger car units/h) 0.074 0.007 10.530 0.000 0.061 0.088 

Wind Speed (km/h) -8.805 0.348 -25.330 0.000 -9.486 -8.123 

Wind Direction (North degrees) 0.025 0.005 4.990 0.000 0.015 0.035 

Costant -0.118 0.123 -0.960 0.336 -0.358 0.122 

NO2 Concentration 1 Hour Back (µg/m
3
) 0.873 0.009 98.050 0.000 0.856 0.890 

NO2 Concentration 1 Day Back (µg/m3) 0.074 0.016 4.670 0.000 0.043 0.104 

Moving Average Component -0.098 0.020 -4.810 0.000 -0.138 -0.058 

Seasonal Moving Average Component -0.950 0.007 
-

130.530 
0.000 -0.965 -0.936 

Error Standard Deviation 20.378 0.288 70.830 0.000 19.814 20.942 

LN (Likelihood) = -33783.07       

N. observations = 7563       

Wald X2(7) = 31839.73       
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Fig. 9. Analysis of the SARIMAX model's residuals: distribution and autocorrelation. 

 
 

4 Comparative analysis 
This section compares the two forecasting models in relation to a sample of observations that has not been 
involved in model building. The comparison is based on various criteria, evaluated through statistical and 

categorical metrics: the extent to which observed and simulated concentrations covary, measured by the 

Pearson-R correlation coefficient; the global accuracy, quantified by the mean absolute percent error 
(MAPE); the ability to predict exceedances of fixed threshold densities, measured by the percentage of the 

actual exceedances forecasted by the models and the false alarm ratio, that is the ratio of the predicted 

exceedances that actually did not occurr to all foreseen exceedances. Moreover, to explore the potential 

advantage of ensemble forecasting, the predictions of the two models have been combined and the resulting 
performance has been evaluated. 

4.1 The dataset for comparison 

The dataset used to compare the estimated models refers to the year 2006. For this period, the annual average 
of NO2 hourly mean concentrations is very close to that calculated for the year 2007 (110.6 versus 102.5), 

but the number of cases in which the 200 µg/m
3
 density was exceeded is 1.5 times greater (686 versus 457). 

As emerges from Table 5, the base statistics describing the 2006 set of observations do not differ a great deal 
with respect to the 2007 one (Table 1). 

 

 
Table 5. Descriptive statistics for the set of air quality, transport and weather data collected in 2006 within the study-

area. 

Variables Observations Average Min Max 
Standard 

Deviation 

Hourly mean concentration of NO2 (µg/m3) 8518 110.6 2 403 56.6 

Total traffic volume (passenger car units/hour) 5637 3377.2 721.7 4899.2 1158.1 

Hourly mean speed of wind (km/h) 6871 3.0 0.2 17.6 2.4 

Hourly mean direction of wind (North degrees) 6871 217.9 1.0 358.7 85.8 

Hourly mean temperature (centigrade degrees) 6865 13.9 -2.1 37.3 7.1 

 

 

4.2 Evaluation of model forecasting performance and sensitivity analysis 
As already emphasized, the artificial neural network and the SARIMAX model have been compared with 

respect to the ability to predict the NO2 concentrations recorded at Marylebone road in 2006. In order to 

provide initial and tentative conclusions on the potential benefit of ensemble forecasting, the two models 
have been integrated into a mixture model by taking for each case the maximum of the concentrations 

predicted by both of them. The choice of the max functional form for the ensemble is motivated by the two 
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models' tendency to underestimate pollution peaks. In fact, for the instances in which the threshold density 

(200 µg/m
3
) is exceeded on average during an hour, the mean ratio of the predicted concentration to the 

actual one is 0.89 in the SARIMAX case and 0.86 for the neural network; it becomes a bit higher (0.92) if 
the two models are merged into an esemble. 

Fig. 10 visually outlines the distributions of measured and simulated concentrations. The graphic tool 

employed is the box plot, which represents the 25
th

 and 75
th
 percentiles with the the bottom and top lines of 

the box, respectively. Moreover, the line intersecting the box identifies the median of the distribution, while 

the two whiskers provide a measure of the data's spread. The isolated points out of the spread represent 

outliers. As can be seen in the picture, all the models reproduce the observed yearly distribution of 

concentrations quite well. In addition, it is clearly displayed by the upper whiskers that all models 
underestimate the high level of concentrations, even though the esemble mitigates this problem. 

 

 

Fig. 10. Box Plot of NO2 concentration distribution in 2006 at Marylebone road: obeservations versus simulations. 

Table 6 compares all models with five performance indicators. First, two statistical indices are used to 

measure the correlation and the mean absolute percent difference between observed and estimated densities. 
With reference to these indicators, the three considered models do not differ a great deal and can be deemed 

fairly effective. 

Second, two categorical indices are used to evaluate the model ability to foresee the exceedance of the 200 
µg/m

3
 limit. One indicator is the percentage of the real exceedances forecasted by the models. From this 

point of view, the esemble approach yields a rather better performance, since the max operator lowers the 

tendency to underestimate extreme values of pollution. The other indicator is the share of the predicted 
exceedances (alarms) that did not occur (false alarm ratio). All models present good levels of this 

performance measure with a percentage of false alarms (predicted exceedances that did not occur) varying in 

the 30-37% range. Furthermore, when a false alarm is generated by any model, the corresponding real 

concentration is quite high on average (around 180 µg/m
3
), which makes such an alarm useful anyway. 

As the models underestimate pollution peaks, their ability to foresee exceedances could be enhanced by 

establishing an alarm threshold smaller than 200 µg/m
3
, but high anyway, say 180 µg/m

3
. This means 

planning to intervene through traffic management whenever a model forecasts for the next hour a density 
beyond 180 µg/m

3
. By doing so, one could expect better values for the percentage of the actual exceedances 

captured by the models, since the real concentrations slightly above 200 µg/m
3
 and estimated by the models 

at lower values but higher than 180 µg/m
3
 would trigger traffic management actions under the new approach. 

Table 7 confirms this assumption, showing that models' performance in foreseeing historical exceedances 
improve by even 22 percent points at the expense of an acceptable rise in the incidence of false alarms (from 

30-37% to 45-51%). Furthermore, the mean density when a false alarm is issued is still pretty high (170-173 

µg/m
3
), which guarantees an useful traffic management intervention. 

In terms of actual exceedances foreseen by the models, better results could be obtained with lower alarm 

thresholds to the detriment of the false alarm ratio; at any rate, 180 µg/m
3
 leads to a satisfactory balance 

between the two conflicting evaluation criteria. 
 

 
Table 6. Evaluation of forecasting performance if the alarm threshold is 200 µg/m3. 
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Modelling Approach Correlation MAPE (%) 

Predicted 

Exceedances 
(%)  

False Alarm 
Ratio (%) 

Mean Density 

for False 
Alarms (µg/m3) 

SARIMAX model 0.91 18.62 54.61 33.86 177.85 

Artificial Neural Network 0.91 16.53 49.38 30.40 180.59 

Esemble: max [PredSARIMAX, PredANN] 0.92 19.32 61.95 36.77 177.66 

 

 
Table 7. Evaluation of forecasting performance if the alarm threshold is 180 µg/m3. 

Modelling Approach Correlation MAPE (%) 
Predicted 

Exceedances 
(%)  

False Alarm 
Ratio (%) 

Mean Density 
for False 

Alarms (µg/m3) 

SARIMAX model 0.91 18.62 76.97 46.45 172.14 

Artificial Neural Network 0.91 16.53 71.56 45.48 173.14 

Esemble: max [PredSARIMAX, PredANN] 0.92 19.32 82.15 50.91 170.38 

 
 

Figures. 11-13 compare the behaviours of observed and simulated concentrations during the validation 

period in relation to the above three models. The scatter plots on the right-hand side show similar and high 
levels of linear correlation between observations and forecasts for all models, while the line plots on the left-

hand side demonstrate that the artificial neural network has the worst performance in predicting pollution 

peaks. This can be explained considering that the training of a neural network does not use the entire 
available dataset to estimate the vector of weights associated to the neural connections; in fact, the test subset 

of data (containing in this application as many as 1712 observations) is not employed in the learning process, 

but is used to conduct an unbiased estimation of the network's likely performance. 

 
 

 

Fig. 11. NO2 concentrations observed in 2006 at Marylebone road versus SARIMAX forecasts. 
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Fig. 12. NO2 concentrations observed in 2006 at Marylebone road versus Aritificial Neural Network forecasts. 

 

 

 

Fig. 13. NO2 concentrations observed in 2006 at Marylebone road versus Ensemble forecasts. 

 

 

To check the robustness of the two forecasting models in comparison, a sensitivity analysis has been 
performed on the influential factors, that are traffic volume, wind speed and wind direction. In detail, as 

these variables are likely subject to measurement errors, the models' prediction performance has been 

evaluated under two scenarios: a Low Scenario perturbating the explanatory variables' levels, observed in 
2006 at Marylebone road, with a uniform random error that ranges from -5% to +5%; a High Scenario based 

on a -15% to +15% uniform random error. 

Table 8 compares the performance indicators' values under the two scenarios with those based on the original 
dataset, in relation to an alarm concentration threshold set at 180 µg/m

3
. It emerges that the assumed 

perturbations impact the accuracy of both models slightly, which means that these are very robust to 

measurement errors. 

 
 

Table 8. Sensitivity analysis results if the alarm threshold is 180 µg/m3. 

Modelling Approach Correlation MAPE (%) 
Predicted 

Exceedances 
(%)  

False Alarm 
Ratio (%) 

Mean Density 
for False 

Alarms (µg/m3) 

SARIMAX model 0.91 18.62 76.97 46.45 172.14 

SARIMAX model-Low Scenario 0.91 18.87 76.64 46.19 172.51 

SARIMAX model-High Scenario 0.90 20.17 76.32 46.54 172.85 

Artificial Neural Network 0.91 16.53 71.56 45.48 173.14 

Artificial Neural Network-Low Scenario 0.91 16.60 70.94 45.30 172.85 

Artificial Neural Network-High Scenario 0.91 16.71 72.50 45.79 172.77 

 

 

5 Conclusive remarks and future steps 
The illustrated findings reveal that the neural network can represent properly the non-linear relationships 

between concentration and weather, despite its minor ability at foreseeing exceedances with respect to the 
alternative models. So, it could play a role as a non-parametric tool for a preliminary analysis of the above 

non-linear behaviours so as to gain knowledge for improving the specification of the better SARIMAX 

model by the introduction of non-linear components. 
This initial study also demonstrates that the ensemble approach is really promising for the prediction of 

extrem pollution events. This is surely an area of research that deserves further investigation. In particular, an 

interesting issue to tackle is the influence of the number and type of esemble members on the performance in 

forecasting pollution peaks. 
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Moreover, we believe that forecasts of high concentrations could be further improved by employing as 

transport-related causal factor a variable representing the mean hourly behaviour of congestion. The relevant 

literature, in fact, states that NO2 concentration is more related to variability in vehicle speed than to speed 
itself or traffic flow (Tartaglia, 1999). Hence, it is plausible that extreme levels of pollution can be better 

explained with stop and go driving and tailback formation. 

On the side of meteorological influence over NO2 concentration, we intend to evaluate the explanatory power 
of some other atmospheric variables, notably solar radiation, concentration of volatile organic compounds 

and vertical temperature gradient. The first is radiant energy emitted by the sun, particularly electromagnetic 

energy, and is an influential factor of photochemical smog, along with volatile organic chemicals. In fact, 

nitrogen dioxide from vehicle exhaust is photolyzed by incoming solar radiation to produce nitrogen oxide 
and an unpaired oxygen atom, which then combines with an oxygen molecule to produce ozone. Under 

normal conditions, the majority of ozone particles oxidize nitrogen oxide back into nitrogen dioxide, thus 

leading to an only temporary increase in ozone density near ground level. However, when volatile organic 
compounds are present in the air, they turn nitrogen oxide into nitrogen dioxide without breaking down any 

ozone molecules, which rises ozone levels durably. 

The vertical temperature gradient, instead, is important for the formation-dispersion process of all air 
pollutants. It measures how much colder the air gets as we move vertically up through the atmosphere. If the 

temperature decreases slowly with altitude, or even increases, the atmosphere becomes stable and slackens 

the dispersion of pollution. 

A final suggestion concerns the possibility of enhancing the ability to foresee exceedances by requiring 
traffic management actions when the predicted concentration overcomes a limit that is pretty high but lower 

than the normative one (200 µg/m
3
). This improvement occurs because a smaller alarm threshold 

compensates for the tendency of models to underestimate anomalous levels of NO2 pollution. This additional 
limit value has been identified with a rule of thumb approach balancing forecasting performance and 

incidence of false alarms. Further research could investigate the development of an objective function to 

guide the determination of this other threshold through a mathematical programming method. 

Another future step will focus on the prediction of extreme NO2 pollution events for sites where these 
phenomena happen rarely, but with a frequency that can result in violation of the air quality standards. In 

such cases, previous studies (Stockwell et al., 2002) have highlighted the limitation of site-specific statistical 

models. The hypothesis to be tested is that the application of a panel data dynamic econometric model may 
outperform a site-specific model at predicting pollution peaks. This assumption is underpinned by the idea 

that merging the datasets describing the behaviour of NO2 hourly density in many different places of a 

Region or a Country can increase the frequency of observed severe pollution events along with the 
variability of transport and meteorological variables, thus resulting in more accurate forecasts of 

concentration during periods of unusual emissions and/or weather conditions. Further, the panel framework 

would permit to introduce the geographic characteristics of the monitoring sites as influential factors (e.g. the 

ratio of average buildings' height to street width), thus making the prediction model highly transferable. 
We also intend to explore the possibility of estimating with fairly accurate precision the yearly frequency 

distribution of concentrations and related average well in advance of the end of the year using a sample of 

the annual set of observations (for instance, the data collected during the first few months). This hypothesis 
should be valid for transport-related air pollutants, as mobility patterns have a cyclical nature and are rather 

stable. If the discussed assumption will be demonstrated, a novel methodology able to anticipate the annual 

mean concentration and its distribution for different sites will emerge, enabling Local Authorities and policy 
makers to timely define and implement medium-term strategies (modal shift plans, low emissions zones, 

relocation of queues, etc.) and traffic management options to prevent or reduce the exceedance of pollution 

limits. 

In the end, we will investigate the feasibility and the potential benefits of the interaction between real-time 
air quality forecasting and traffic microscopic simulation, to mitigate atmospheric pollution exposure in line 

with the environmental legislation requirements. This is based on the idea that, if a concentration peak (that 

may go beyond the regulatory threshold) could be predicted few hours in advance, solutions to avoid its 
occurrence should be sought by a quantitative approach. As occurs in the real-world applications of traffic 

management, data coming from a real-time traffic surveillance system (UTMC, SCOOT, etc.) could be fed 

into a dynamic microsimulator for short-term estimation of network status in terms of flows, average speed 

of vehicles, travel times and traffic jams. These traffic-related predictions could be then used to foresee air 
quality. If an exceedance of any concentration limit were foreseen, the impact of alternative traffic 

management scenarios on pollution could be simulated through the interplay between the microsimulator and 



Working papers SIET 2015 – ISSN 1973-3208 

 

the air quality forecasting model. This might aid the choice of an ex-ante strategy to prevent the extreme 

pollution event at the minimum social cost in terms of effects on important transport variables like, for 

instance, network congestion, accessibility and public transit service quality. 
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