PLATFORM PRICING AND CONSUMER FORESIGHT: THE CASE OF AIRPORTS

Ricardo Flores-Fillol

Universitat Rovira i Virgili

Alberto lozzi

Università di Roma `Tor Vergata' and SOAS, University of London

Tommaso Valletti

Imperial College London, Università di Roma `Tor Vergata' and CEPR

XVII Conference of the Italian Association of Transport Economics and Logistics Bocconi University - Milan, 29th June - 1st July 2015, 12 May 2015

Introduction: two-sided

- Airports are an example of two-sided platforms
 - revenues come from two sources
 - Aeronautical:

landing fees charged to airlines

- Retail (e.g., shops, food and beverage, car parking...): concessions contracts
- Demand complementarity
 - Passengers only purchase retail goods if they fly
 - Special feature: one-way complementarity
- Externality between the sources of revenues
 - Landing fee $\uparrow \Rightarrow$ flight price $\uparrow \Rightarrow$
 - \Rightarrow demand \downarrow \Rightarrow retail revenues \downarrow

Introduction: retail revenues

Retail revenues are becoming more and more important for airports

Introduction: shopping decision

- 4
- □ Shopping decisions are <u>often anticipated</u>
- □ According to Mintel (2013)
 - more that 15% of European leisure travellers anticipate airport shopping
 - 16% of German leisure travellers
 - 18% of British leisure travellers
 - Asian-pacific international travellers are also committed "anticipated" shoppers

Introduction: retail competition

- Retail structure in airport is chosen by airports, which choose
 - Identity of franchisees
 - Type of contract
- Retail competition affect airport revenues in many ways
 - Negative effect: competition reduces retail profits and thus revenues that can be extracted
 - Positive effect:
 - retail competition decreases prices and thus enhances demand for flights (with foresighted consumer)

Introduction: demand for flights

Demand for flights is affected by many factors

- Airlines
 - Flights fares (chosen by airlines, but see below ...)
- Airports
 - Ianding fee, when passed through to passengers into final flight fares
 - Often regulated; the two-sided nature of the airport business limits the degree of market power (airports claim so...)
 - shopping activity that can be carried out at the airports
 - This in turns depends on retail competition, which decreases prices (if consumers are foresighted)

Aim of the paper

- Study the optimal airport behaviour, looking at the interplay between
 - Landing fee
 - Airport retail market structure
- Novel approach
 - One of the first papers to make explicit the <u>one-way</u> <u>demand complementarity</u>
 - First paper to account for the <u>endogenous nature of the</u> <u>retail market structure</u>
 - First paper to model the <u>varying degree of consumer</u> <u>foresight</u>, i.e., the extent to which passengers anticipate, at the time of purchasing their flight, the retail consumer surplus

Main findings

8

- Degree of consumer foresight crucial in determining optimal airport's behaviour
 - Perfectly myopic consumers
 - Minimum number of retailers
 - Low landing fee (can be 0)
 - Perfectly forward looking consumers
 - Maximum number of retailers
 - Higher landing fee
- Optimal behaviour non-linear in consumers' foresight

Caveat

- More than an airport paper
- In many markets, you may find the same ingredients
 - One-way demand complementarity
 - Imperfect foresight

- Amusement parks
- Shopping malls
- Hotel rooms
- Bank accounts
- Mobile phones

•••

Related literature

Airports

- Two-sided: Zhang and Zhang (TRE, 1997), Ivaldi et al. (2012)
- Pricing: Czerny (JRE, 2006), D'Alfonso et al. (JTEP, 2013)...
- Consumer myopia
 - Strolz (RES, 1995), Verboven (JINDEC, 1999)...
- Ex ante demand uncertainty
 - Heidhues and Koszegi (AER, 2009), Karle and Peitz (RAND, 2014)...
- Markets with primary and secondary goods
 - Oi (QJE, 1971), Ellison (QJE, 2005), Shulman and Geng (MS, 2013)
- Shopping malls
 - Hagiu (JEMS, 2009), Pashigan and Gould (JLE, 1998)...
- Platform openness
 - Huang et al. (MS, 2013), Hagiu and Spulber (MS, 2013)...

The model (1)

- □ 3 (sets of) agents: airport, airlines, and retailers
- Static two-stage game
 - First stage:
 - airport set landing fees and chooses the number of retailers
 - Second-stage:
 - retailers and airlines set prices
 - Then, trade takes place and payoffs are collected
- Full information and subgame perfection

The model (2)

- □ Linear (in passengers) landing fee
- All costs normalised to 0, except the landing fees for airlines
- Two-step process for passengers decisions
 - first, they purchase their flight tickets;
 - second, they buy retail goods at the airport
- Infinite number of potential retailers:
 - Airport able to fully internalised retail profits by auctioning concessions

Air travel demand

13

Infinite number of potential consumers/travellers

□ Each consumers derives this utility from flying once $U_h(p_A, p_R; z, \delta) = z_h - p_A + \delta CS(p_R)$

Uniformly distributed

Consumer foresight

Expected CS from retail

 \Box Threshold level of parameter z

$$\tilde{z}(p_A, p_R; \delta) = p_A - \delta CS(p_R)$$

Air travel demand is then

$$q_A(p_A, p_R; \delta) = 1 - \tilde{z}(p_A, p_R; \delta)$$
$$= 1 - p_A + \delta CS(p_R)$$

Retail demand

14

- Retail competition modelled as in the Salop circle, with n_R retailers and unit demand
- Marginal consumer between firm i and j

$$\tilde{x}_{ij} = \frac{1}{2n_R} + \frac{p_i - p_j}{2t}$$

Demand for firm *i* (assuming symmetry btw rivals): $X(p_i, p_{-i}; p_A) = 2 \tilde{x}_{ij} q_A(p_A, p_R; \delta)$

 $\square \text{ Profits for firm } i: \ \pi_i = p_i X(p_i, \boldsymbol{p}_{-i}; p_A)$

2nd stage: retail market

15

□ Retailers compete along the Salop circle $\max_{p_i} \pi_i(p_i, p_{-i}; p_A)$

- → symmetric Nash equilibrium prices $p_R(p_A)$
- Some comparative statics, when consumers are foresighted

 ■ Retail price is lower than with no foresight
 p_R(p_A) | Solop price
 Solop price
Solo

Retail price may go down as ℓ increases

2nd stage: air travel market

Symmetric Nash equilibrium quantities $q_A(p_R)$ Unsurprisingly, standard Cournot quantities, except for the shift parameter $\delta CS(p_R)$

1st stage

□ Airports solve this problem $\max_{A} \ell n_A q_A + p_R n_A q_A$

 ℓ, n_R

Aeronautical profitsumber of passetgie profits

- Highly non-linear expression
- Analytical equilibrium solutions for limiting cases
 - \blacksquare Perfectly myopic consumers ${\ensuremath{\@model{scalar}\ensuremath{\@$
 - Forward looking consumers $\Im \delta > 4/5$
 - Almost myopic consumers $\delta \rightarrow 0$
- \square Numerical solutions for the remaining range of δ

Equilibrium (1): myopic consumers

- Low landing fee (can be 0)
 - Low flight prices attract consumers into the airport
- Minimum number of retailers
 - $\square \rightarrow$ high retail prices
 - High retail profits, appropriated by the airport
- Since consumers are myopic, they cannot be attracted into the airport with low prices
- Most suitable instrument to attract passengers into the airport is a low flight fare (driven by a low landing fee)
- Consumers' willingness to pay is extracted by the retail activities

Equilibrium (2): foresighted consumers

- Maximum number of retailers (+infinity)
 - imes o low retail prices, which attract consumers into the airport
 - Zero retail profits
- High landing fee
 - $\square \rightarrow$ high flight prices, but...
 - ... high number of passengers
- Since consumers are foresighted, they are attracted to the airport by low retail prices
- Large number of consumers has a positive effect on aeronautical profits
- Consumers' willingness to pay is extracted by the aeronautical activities

Equilibrium: profits

- \square How do profits vary with δ ?
- An answer to this question illustrates the profitability of advertising campaigns by airport
- Casual observation gives strong evidence that consumers ARE NOT FULLY MYOPIC !!

Equilibrium: profits

21

- Our model confirms the airports' interest in advertising campaigns (caution: no cost of ads, so incomplete analysis)
 - Profits higher with foresighted consumers
 - As $\delta \uparrow$, weight of
 - \blacksquare retail profits \downarrow
 - lacksquare aeronautical profits igta

However, profits not always monotonically increasing in consumers' foresight

A testable implication

A clear pattern emerges in our analysis:

negative relationship between landing fees and competition in the retail market

Hence:

negative relationship between landing fees and the share of profits from retail activities

A testable implication of our model !!

A testable implication

- 23
- With no sophisticated (but reliable) econometric analysis, we collected landing fees and retail profit shares from major US airports and casually observe that....

Regulatory implications (1)

24

Easy to characterise the first best

Most fragmented retail market structure

- Landing fee=0
- Airports alone never deliver it
 - High δ: efficient retail structure but inefficient landing fee
 - Low δ: efficient landing fee but inefficient retail structure

Regulatory implications (2)

- Is the two-sided argument against landing fee regulation well grounded?
 - Yes, but only with myopic consumers
- Endlessly debated regulatory question: <u>single till or dual till?</u>
 - Misplaced question: regulation should
 - Not only look at revenues from both sides of the market
 - But also at policies (in our case, nR) in both sides of the market

THANK YOU !!

alberto.iozzi@uniroma2.it

