"L'ingegneria dei sistemi e i nuovi mercati dei trasporti"

Special track 2 (Plenary Session)

Analisi della domanda per la valutazione della fattibilità economica di servizi ferroviari di Alta Velocità in regime di concorrenza

Pierluigi COPPOLA – "Tor Vergata" University of Rome

SIET annual conference Venezia, 20th September 2013

EU STRATEGIES FOR TRANSPORT BY RAIL

- EU Directive 440/1991/CEE
- First Railway package (2001)
- Second Railway package (2004)
- Third Railway package (2007)
- Fourth Railway package (2013 proposal)

Opening the market to competition

EU Directives for Transport by Rail

EU Directive 440/1991/CEE

 Separation of Infrastructure Manager (IM) and Railway Undertaking's (RU's)

First Railway package (2001)

- Opening of the market for **international freight transport** by rail (as of 2008)
- License and Safety Certificates to Railways Undertakings
- Regulation of Rail infrastructures capacity e fares

Second Railway package (2004)

- Safety and Interoperability (towards ERMTS)
- Opening of the market for the **whole freight transport** by rail (as of 2006)
- European Railway Agency (ERA)

Third Railway package (2007)

 Opening of the market for international passenger transport by rail (as of 2010)

Fourth Railway package (2013 proposal)

- Opening of the market for **domestic passenger transport** by rail
- Safety and Interoperability (simplification and harmonization)

Vertical separation in the European Railway sector (pioneered by Sweden in 1988; in Italy : D.Lgs 149/99)

Incoming of private Railways Undertaking, mainly in <u>freight</u> <u>transport</u>, but in some cases also in <u>passenger</u> <u>transport*</u>

*Sweden, UK, Germany and Italy (D.Lgs 183/2003) unilaterally opened their **passenger domestic market**

Effect of EU Directives for Passenger HSR Transport

Railways Undertaking (RU) ownerships	Examples of Long Distance RU's
Entirely Public	SNCF, DB, Trenitalia ,
Public with minor participation of private	TGV Lyra (France-Switzerland)
Public-Public Joint Venture	Thalys
Public-Private Joint Venture	Eurostar
Entirely Private	 NTV (Italy, April 2012), LOCOMORE (Germany, July 2012)

HSR demand analysis in a competing market

- Effects within the HSR market (competition among RU)
 - Service quality
 - Fares
- Impacts on different market (modal competition)
 - New services
 - Modal shares
- Wider Economic Effects
 - Economic Growth
 - Tourism
 - Relocation of workplace and residents

— …

HSR DEMAND FORECASTING

• Taxonomy of demand on HSR services

DIVERTED	from other modes	e.g. shift from air/auto to HSR	
DEMAND	from other rail services	e.g. shift from Intercity to HSR	endogenous factors
INDUCED DEMAND	direct	e.g. increase of trip frequency, change of trip destination	
	indirect	e.g. increase of mobility due to change in life- styles and land use	exogenous
DEMAND GROWTH		e.g. increase of mobility due to economic growth	factors

THE METHODOLOGY FOR HSR DEMAND FORECASTING:

Elastic demand multimodal scheduled-based assignment model

The schedule-based mode choice model

Nested logit models with a nesting structure to capture higher degrees of substitutions among specific subsets of modal alternatives, particularly the HSR alternatives provided on the same route by different operators, NTV vs. HSR-Trenitalia

SOME REFERENCES

- Ben-Akiva M., Cascetta E., Coppola P., Papola A., and Velardi V. (2010) "High speed rail demand forecasting in a competitive market: the Italian case study" Proceedings of the **World Conference of Transportation Research (WCTR)**, Lisbon (Portugal)
- Cascetta E., and Coppola P. (2011) "High Speed Rail Demand: Empirical and Modeling Evidences from Italy" *Proceedings* of the European Transport Conference, Glasgow (UK).
- Cascetta E., and Coppola P. (2012) "An elastic demand schedule-based multimodal assignment model for the simulation of high speed rail (HSR) systems" EURO Journal of Transportation and Logistics, Springer Vol.1 pp- 3-28
- Cascetta E., Coppola P., and Velardi V. (2013) "High Speed Rail demand: before and after evidences from the Italian market" **disP – The Planning review,** ETH-Zurich Vol. 193·(49.2) pp. 51-59
- Cascetta E., Coppola P. (2013) "High Speed Rail (HSR) induced demand models" Proceedings of the 16th EURO Working Group on Transportation, Porto (Portugal)

Design of strategic policies Services and Rolling Stock Fares

Design of operational policies Timetable

Strategic policies tested: service and rolling stock Alternative scenario:

No services between Napoli and Salerno + new services on the "Torino-Milano-Venezia"

+ new services on the Adriatic corridor

Operational policies tested: fares

Fares "war" among the two HSR competitors

	HSR Service (invariant)	e supply		Ref. Scen	ario			Alterna	tive sce	nario 1	
	TrainKm/day	SeatKm/day (mil.)	1st class	2nd class	paxKm (mil.)	%	1st class	2nd class	paxKm (mil.)	delta%	%
Trenitalia	78.162	43,9	Base	Base	7.128	66,6%	-20%	-20%	8.066	13,2%	71,5%
NTV	35.238	15,9	base	base-8%	3.569	33,4%	=	=	3.209	-10,1%	28,5%
					10.697	100,0%			11.275	5,4%	100,0%

	HSR Service supply (invariant)		Ref. Scenario			Alternat	ive scei	nario 2			
	TrainKm/day	SeatKm/day (mil.)	1st class	2nd class	paxKm (mil.)	%	1st class	2nd class	paxKm (mil.)	delta%	%
Trenitalia	78.162	43,9	Base	base	7.128	66,6%	-20%	-20%	7.715	8,2%	67,2%
NTV	35.238	15,9	base	base-8%	3.569	33,4%	-20%	-26,6%	3761	5,4%	32,8%
					10.697	100,0%			11.476	7,3%	100,0%

Strategic policies tested: fares

MODEL ELASTICITIES

direct elasticity of total HSR demand with respect to HSR fares : -0,37

cross elasticity of individual HSR operator w.r.t. fares of competing HSR operator: +0,74

OBSERVED ELASTICITIES

Direct elasticity of total travel demand w.r.t. fares (in 2012) included in a range between -0,30 and -0,40

Operational policies tested: timetable

Example of timetable setting to increase flows

orig	dest	dep. Time	arr. Time	1st class	2nd class	total flow
ROMA OSTIENSE	ROMA TIBURTINA	06.06	06.16	4	12	16
ROMA TIBURTINA	MILANO ROGOREDO	06.20	09.05	56	69	125
MIANO ROGOREDO	MILANO P.GARIBALDI	09.07	09.17	45	66	111

orig	dest	dep. Time	arr. Time	1st class	2nd class	total flow
MILANO P.GARIBALDI	MILANO ROGOREDO	06.45	06.55	37	60	97
MILANO ROGOREDO	ROMA TIBURTINA	06.57	09.42	52	80	132
ROMA TIBURTINA	ROMA OSTIENSE	09.46	09.56	5	14	19

dep. Time	arr. Time	1st class	2nd class	total flow
07.06	07.16	12	36	48
07.20	10.05	90	168	278
10.07	10.17	75	150	225

dep. Time	arr. Time	1st class	2nd class	total flow
07.15	07.25	63	131	194
07.27	10.12	73	153	226
10.16	10.26	16	50	66

Operational policies tested: timetable

Example of timetable setting to balance train loads

orig	dest	dep. Time	arr. Time	total flow
MILANO P.GARIBALDI	MILANO ROGOREDO	07.00	07.10	201
MILANO ROGOREDO	BOLOGNA Centrale	07.12	08.07	235
BOLOGNA Centrale	FIRENZE S.M.N.	08.10	8.47	238
FIRENZE S.M.N.	ROMA TIBURTINA	08.57	10.27	246
ROMA TIBURTINA	ROMA OSTIENSE	10.31	10.41	95

Milano

Venezia

Train OD matrices

	BOLOGNA Centrale	FIRENZE S.M.N.	ROMA TIBURTINA	ROMA OSTIENSE
MILANO P.GARIBALDI	77	67	35	23
MILANO ROGOREDO	13	11	6	4
BOLOGNA Centrale		93	-	-
FI S.M.N.			111	68

	PADOVA	BOLOGNA Centrale	ROMA TIBURTINA	ROMA OSTIENSE
VENEZIA S.LUCIA	17	23	11	16
PADOVA		63	13	22
BOLOGNA Centrale			49	84

No pax from Bologna to Roma boarding on this train at Bologna Centrale

CONCLUSIONS

Competition within the HSR market is an additional element of complexity in demand analysis

- forecasting impacts on services supply (e.g. fares)
- impacts on demand among operators within-mode (e.g. market shares)

Surveys and mathematical models are essential for strategic planning, for monitoring the HSR market and for designing services

Operations	Strategic Planning
 Schedule-based models 	 Schedule-based vs. frequency- based models Induced demand models